Antimicrobial peptide Epinecidin-1 promotes complete skin regeneration of methicillin-resistant Staphylococcus aureus-infected burn wounds in a swine model
نویسندگان
چکیده
This report shows that the antimicrobial peptide (AMP) Epinecidin-1 (Epi-1) efficiently heals MRSA-infected heat burn injuries and provides protection from infection in a pig model. The presence of an optimal level of Epi-1 induces cell proliferation by promoting cell cycle progression through an increase in S-phase cells. Epi-1 also induces proliferation to cover the wounded region in an in vitro cell proliferation assay using immortalized human epithelial HaCaT cells. Next, the in vivo wound healing efficiency of Epi-1 was tested in heat-burned pig skin infected with MRSA under in vivo conditions. Treatment of the injury with Epi-1 for 1 h at six hours post-infection completely healed the wound within 25 days. Conversely, the injury in the untreated control was not healed 25 days post-infection. Histological staining of wound sections with H&E showed that Epi-1 enhanced vascularization and increased epithelial activities in the wound region. Neutrophil recruitment to the wounded region in the Epi-1-treated sections was visualized by Giemsa staining. Additionally, Masson's trichrome staining of wound sections confirmed that Epi-1 enhanced extracellular collagen compound formation. The induction of sepsis-associated blood C-reactive protein (CRP) and the pro-inflammatory cytokine IL-6 in response to MRSA infection was also suppressed in pigs that received Epi-1. Taken together, the results demonstrate that the biomaterial Epi-1 heals wounds through increasing epithelial cell proliferation, vascularization, and the formation of collagen and controls MRSA infection-mediated sepsis in pigs.
منابع مشابه
Evaluation of antibiotic activity of methicillin in healing of full-thickness infected wounds with sensitized methicillin resistant Staphylococcus aureus in presence of HAMLET
Objective(s): The novel healing choices for handling of infections due to multidrug resistant Staphylococcus aureus are reguired. HAMLET has been reported to be able to sensitize bacterial pathogens to traditional antimicrobial agents. The aim was to assess wound healing activity of methicillin in presence of HAMLET in methicillin resistant S. aureus (MRSA) infected wounds. Materials and Method...
متن کاملInfluence of Ferula assa-foetida Loaded Chitosan Nanoparticle Biofilm on Wound Healing in Full-Thickness Wounds Infected with Methicillin Resistant Staphylococcus aureus
Objective- Cutaneous wound healing is an essential physiological process consisting of the collaboration of many cell strains and their products. Initiation of new management for treatment of wound infections caused by multidrug resistant Staphylococcus aureus is required. The aim of the present study was to assess wound healing activity of Ferula assa-foetida...
متن کاملEffectiveness of a Glycylcycline Antibiotic for Reducing the Pathogenicity of Superantigen-Producing Methicillin-Resistant Staphylococcus aureus in Burn Wounds
Objective: Burn-injured patients are highly susceptible to infectious complications, which are often associated with increased morbidity and mortality. Rates of antibiotic resistance have increased, and resistant species such as methicillin-resistant Staphylococcus aureus provide additional challenges in the form of virulence factors. Proteins can disrupt local healing, leading to systemic immu...
متن کاملMelittin, a honeybee venom-derived antimicrobial peptide, may target methicillin-resistant Staphylococcus aureus
Methicillin‑resistant Staphylococcus aureus (MRSA) is difficult to treat using available antibiotic agents. Honeybee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The venom contains predominantly biologically active compounds, however, the therapeutic effects of such materials when used to treat MRSA infections have not been inve...
متن کاملEfficacy of topically delivered moxifloxacin against wound infection by Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus.
Wound infection is a common risk for patients with chronic nonhealing wounds, causing high morbidity and mortality. Currently, systemic antibiotic treatment is the therapy of choice, despite often leading to several side effects and the risk of an insufficient tissue penetration due to impaired blood supply. If systemically delivered, moxifloxacin penetrates well into inflammatory blister fluid...
متن کامل